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Abstract--The use of rotation to simulate increased gravity in scale models of horizontal liquid--gas flows is 
examined. The influences of Coriolis forces and natural gravity in the model are seen to be small provided 
that high rotation rates are used, and large length scale-down factors can then be achieved. The modelling of 
compressibility and gas-viscosity effects, however, is not normally possible and these must therefore be small 
in the original flow. 

1. INTRODUCTION 

In a recent article by this author (Chesters 1975) the criteria for dynamic similarity of isothermal, 
gas-liquid, two-phase flows without mass transfer were derived from the conventional equations 
governing such flows and the limitations of their validity discussed. The first three conditions for 
similarity of two flows, equality of Froude, Weber and liquid Reynolds numbers, were seen to 
require equality of the dimensionless liquid-property parameter Q(= pLCr3/g~L'), together with 
characteristic length and velocity scales in the two flows proportional to (o'/pLg) '1~ and (g~/pL) 1~" 
respectively (pL, ~L density and dynamic viscosity of the liquid, cr surface tension, g 
acceleration due to gravity). Taking g to be the same in each flow these requirements lead to 
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where xc and uc denote a characteristic length and velocity of the flow, respectively. 
Although [1] is satisfied for many pairs of liquids (e.g. for water and trichloroethylene) the 

resulting values of (xc)l/(x~)2 do not in general differ greatly from unity (for water and 
trichloroethylene, (x~)=/(xc)w = 0.53). A dramatic scale-down of a particular flow is therefore not 
possible in general. If, however, the value of g in the second flow is artificially increased by 
rotating the system, the situation is changed radically and large scale-down factors are 
obtainable. 

The effects of increasing g in this way, including the complication of Coriolis forces, are 
examined below. 

2. INFLUENCE OF g ON THE VARIOUS SCALE FACTORS 

If  the value of  g is not  assumed to be equal  in the two flows the express ions  for  equali ty of  Q 

and for  the relat ive length and veloci ty  scale factors  become:  
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(u~), _ (gcr/ pL ), '/4 [6) 
(U~)2 (gcrlpL)2" 

These can be written more simply if the values of o,, #L, pL, g, A and uc are expressed in units 

equal to their respective values in system 1. Since tr, m-, etc. then all acquire the value unity in 
flow 1, only symbols for these quantities in flow 2 remain and the suffix 2 can be omitted without 

confusion. Equations [4], [5] and [6] then become 

pLIT 3 
, = 1, [7 ]  

g/ZL 

x~ = (o'lp,_g) m, [8] 

uc = (go'l pL ) "  = (o'l pLx~ )'/2 [91 

where the latter form of [9] is obtained by use of [8]. It is seen that a large value of g leads to a 

small value of xc, that is, a large length scale-down factor. 
The remaining criteria for similarity of the two flows are (Chesters 1975): 

(a) equality of Euler number (either po/pou~ 2 or po.~/pLuc2); 

(b) equality of density ratio, po.c/p,_; 

(c) equality of viscosity ratio, tzohzL; 
(d) equality of system geometry, in which is included the ratio of the gas and liquid input flow 

rates. 

(p absolute pressure, p6.~ and po.~ gas pressure and density in some characteristic point in the 

flows.) Still using units based on the values of the quantities in system 1, (a) leads to 

Making use of [9] and [8], this gives 

(b) yields 

Po.~ IpLu~ z = 1. 

p ~ , :  = ( p L g o ' )  ' n  = o ' l x~ .  

pa,~/pL = 1. 

[10] 

Finally, (c) yields 

MW = T(pL/go,) m = TpLXc Icr. [11] 

#o =/zL. [12] 

From [9]-[12] it is seen that a small value of xc (i.e. a large length scale-down factor) implies a 
large value of uc and p~.c and a small value of MW and/z~*. The former two (large velocity and 

*Since the values of ~r and pc in [7] will not, in general, differ greatly from unity, a large value of g implies a small value of 
t~L and hence, via [12], of #o. 

With the help of the perfect gas law (p6 = ( M W ) p o / T ;  MW molecular weight, T absolute 
temperature, with all quantities again in units equal to their values in flow 1), [10] and [8], this 

gives 
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pressure scale-up factors) can, in principle, always be provided but the latter two (small MW and 
/~o for the model gas) are limited by the physical properties of available gases. If, therefore, very 

small values of xc are required both condition [12] and either condition [11] or condition [10] (on 
which [11] is based) will have to be abandoned. 

Equations [10] and [11] represent, respectively, the basic conditions (a) and (b). (a), equality of 
Euler number (po.c/pLuc'), takes account of the compressibility of the gas and is important if 
either (i) appreciable expansion of the flow occurs over distances of interest, or (ii) pressure 
waves play an important role in the flow. The present method will be seen to be restricted in its 
applicability to approximately horizontal flows where both (i) and (ii) will indeed often be 
negligible (e.g. in their influence on the local pressure gradient or gas fraction in a pipeline 
containing liquid and high pressure gas). Neglect of (a) would therefore be an acceptable measure 
in many flows of interest. 

(b), equality of pG.c/PL, takes account of the influences of gravity and of gas inertial forces on 
the liquid flow. These influences, which for example, largely determine the development of 
interracial waves in large scale flows, are not likely to be negligible and should therefore be 
included in the scaling method. 

If requirement [10], and hence [11], is relinquished, the gas pressure in the model can be freely 
chosen to allow requirement (b) to be satisfied. This requirement is now simply: 

MW = pLT/po.c. [13] 

Clearly it is sensible to choose MW (and thus pt.,) as close as possible to the ideal values given 
by [11] and [10], since the greater the departure from these values the greater the influence of 
compressibility in the model, and at some point this influence will become appreciable. Ideally, 
one would test the model with two or more MW (and hence po.c) values to ascertain that the 
influence of compressibility is small, and to provide a correction for it if necessary (by 
extrapolation of the results to the ideal Pt.c value). 

The same argument as for compressibility can be applied to gas viscosity: its influence is 
probably slight in many large-scale flows and the failure to satisfy [12] is therefore probably not 
serious. However, it would be sensible to choose a model gas satisfying [12] as closely as possible 
and ideally more than one value of go should be tested to ascertain its influence. Such tests could 
be combined with those on the influence of compressibility, which also involve a change of model 
gas. 

3. USE OF ROTATION TO INCREASE THE VALUE OF g 

The motion of a fluid with respect to steadily rotating axes can be described by the usual 
equations (continuity, state, Navier-Stokes and initial and boundary conditions) provided the 
body force per unit mass of the fluid, F, is taken as 

F=  go-2to x u - t a  x(~o xr )  [14] 

where r is the position vector of the element of fluid concerned (the origin lying on the axis of 
rotation, figure 1) and oJ is the angular velocity vector of the system (Batchelor 1967). go is the 
natural gravitational acceleration, - 2¢o x u is the Coriolis force per unit mass which is seen to be 
zero if the local velocity vector of the fluid, u, is parallel to to, and - oJ x (to x r) is the centrifugal 
force which is directed radially outwards with magnitude Ro~ 2 (R = radius, i.e. perpendicular 
distance from the point concerned to the axis of rotation). Dividing [14] through by go gives the 
value of g in [4]-[12] since go represents the body force per unit mass in the original large-scale 
flow and F that in the (rotating) model flow: 

to x(to xr )  2~oxu 
g = - -  + k [15] 

go go 

where k is a unit vector in the direction of go. 
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Figure i. Original and scaled systems. 

Except for very small values of to the first (centrifugal) term in [15] will be seen to be much 

larger than the other two 

leo x (aP x r)[ ~> 1, [161 
go 

J,~ x (m x r) I >> 1 [17] 
12oJ x ul 

and [15] becomes approximately 

-ca  x(ca x r) oj2R 
g __ _ - -  [ 1 8 ]  

go go 

Thus for g to be approximately constant over the flow concerned, this flow may only have 
appreciable extension in the direction parallel to the axis of rotation and not in the radial direction. 
This confines the method to the scaling of approximately horizontal flows where, as in the model, 

the body force vector is perpendicular to the long dimension of the flow. 
The extent to which g varies over the flow must now be considered. First, from [18], the 

fractional variation of g due to the radial extension of the flow is 

A R  h 
• l = " ~ -  = ~-  xc [191 

where h is the vertical extension of the original flow (figure 1). If we suppose that R is chosen to 

be of the same order as h, [19] and [8] yield 

e l  - xc - g - , / 2  [20] 

since Or/pL will in general be of the order of 1. The condition that this variation is negligible is 

then that 

xc ¢ 1, or [21a] 

g-~/2 ~ 1. [21b] 
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If R is chosen to be appreciably greater than h, [21] is unnecessarily strict. 
The second departure from the constant g field given by [18] is that due to the Coriolis force, 

which produces a transverse component of g (either radial or circumferential or both, depending 
on the instantaneous local value of u). For a flow strictly parallel to the axis of rotation this force 
is absent but in general a lateral component of velocity, v, will exist, giving rise to a Coriolis 
component of relative magnitude 

2toy 2v 
e2 = to2R foR" [22] 

Making use of [8], [9] and [18] and again taking O~/OL -- 1, [22] yields 

2uc V 2 V . g - , i , _  2 V l/2 e2-(ggo/R),/2R ~g~ ~ x ~  [23] 

where V is the corresponding lateral component of velocity in the original flow. If we again 
suppose that R - h ,  the condition that Coriolis effects be negligible is therefore that 

2 V  • g - ( I / 4 ) ~  1, ~/(goh) or [24a] 

2 V • xc I/2 <~ 1. [24b] 
x/(goh ) 

Again, if R is chosen to be appreciably greater than h, [24] is unnecessarily strict. 
Finally, a departure from the constant g field given by [18] occurs as a result of natural 

gravitation. The relative magnitude of this effect is 

g o  _ - - I  ~3 = ~ = g - xc 2 [25] 

from [8]. ~3 is thus of smaller magnitude than el for the case of R - h and the condition that the 
effects of natural gravity be negligible is in general covered by [21]. 

In fact, if the axis of rotation is chosen to be vertical, the effect of natural gravity is to incline 
the g vector slightly to the axis of flow so that the situation really scaled is that of inclined flow 
(angle of inclination = ~3 = g-, radians). The influence of go could therefore be removed by 
inclining the model flow to the axis of rotation by this same angle. This would, however, increase 
the influences of radial extension and Coriolis forces and might not be worth the gain. 

It is noteworthy that by reversing the sense of rotation the Coriolis forces reverse direction. A 
system which is not symmetrical about a radial plane should then exhibit a change in overall 
characteristics (e.g. pressure drop) which would provide an indication of the magnitude of 
Coriolis effects. Likewise, if the flow system is inverted and the sense of rotation reversed, 
Coriolis forces are unchanged but the effect of natural gravity is reversed• An indication of the 
magnitude of natural gravity effects is then obtained. 

4. AN E X A M P L E  OF C E N T R I F U G A L  SCALING 
As an example of the possible application of the above theory, consider a horizontal pipeline 

of diameter 30 cm containing a gas-liquid flow. It will be supposed that the liquid scalant is to be 
water and that the surface tension of the liquid in the pipeline is half that of water and density the 
same as that of water: 

tr = 2, pL = 1. [261 
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It will be supposed further that a length scale-down factor of 30 is required, and the feasibility of 
this will be examined. Equation [8] gives 

1/30 = (2/g)'12; g = 1800 [27] 

Taking R = 30cm (=h), [18] now gives 

to = ~/(1800 go/30) = 240 rad/sec. 

i.e. about 40 rev/sec: 2400 rev/min. 
The required value of /ZL is given by [7]: 

/ZL = (8/1800) TM = 0.26. [281 

Thus if the viscosity of the original liquid is 1/0.26 centipoise, water at 20°C (lz = 1 cp) is required. 
If the viscosity of the original liquid is 1 cp, water at about 100°C (/z = 0.26 cp) is required. At this 
temperature the vapour pressure is approx. 1 atm, but since the absolute pressure in the model 
will be very high the effect of mass transfer on the flow should still be slight (Chesters 1975). 

According to [9]-[12] the required scale factors for velocity, pressure, gas molecular weight 

and gas dynamic viscosity are: 

Uc = 7.7; [29] 

PG.c = 60; [30] 

MW = 1/60; [31] 

/zo = 0.26. [32] 

For the sake of simplicity no account has been taken of the fact that T may not be exactly 1, just 
as variations in ~r and p with temperature have been ignored. As anticipated in section 2, [32] 
cannot be satisfied whatever the pipeline gas concerned, and [31] only if the pipeline gas happens 
to have a molecular weight of at least 120. Otherwise a model gas with as low a molecular weight 
as possible would have to be used and the required pressure scale-up factor pG.c determined from 

[13l. 
The condition [21] is immediately seen to be fairly well satisfied. The condition [24] leads to 

V ,~ 4,7 m/see. [33] 

Since V is a typical la tera l  component of velocity in the pipeline it may be expected to be an 
order of magnitude smaller than a typical axial component, U. Equation [33] therefore implies 

U ,~ 47 m/sec [34] 

which would certainly be satisfied in most such flows. 
Finally, it is of interest to see how much less the mass flows of liquid and gas are in the model 

than in the pipeline. In units equal to the mass flow rate of either phase in the pipeline the mass 
flow rate of the same phase in the model is readily seen to be 

m = pLu~xg = ( p L x 2 , ~ ) " L  [35] 

= l/116 

in the present case. 
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5. FURTHER REMARKS 

Although constructing a rotating model poses certain engineering difficulties there seems no 
reason why these could not be overcome: the rotation rate in the above example is within the 
normal range and most of the measurements carried out on static systems should be feasible in 
rotating systems. 

A further interesting attribute of a rotating system is that by varying the rotation rate the 
influence of the Froude number can be ascertained since this is the only dimensionless group 
which is affected. 

Finally it is noted that the foregoing theory is based on the conventional equations for 
isothermal, liquid-gas, two-phase flows without mass transfer and since such equations do not 
adequately describe the last stages of rupture of thin films or filaments, the applicability of the 
present similarity theory to flows in which such processes occur cannot yet be taken for granted 
(Chesters 1975). 

6. CONCLUSIONS 
1. By artificially increasing gravity by use of a rotating system, large length scale-down 

factors can be achieved in the modelling of horizontal, isothermal, liquid-gas flows without mass 
transfer. 

2. In order for the analogy between centrifugal force in the model and natural gravity in the 
original system to be complete, it is necessary that the influences of Coriolis forces and of natural 
gravity be negligible in the model. Also the radial extension of the model flow must be small in 
comparison with its mean radius (measured from the axis of rotation). These requirements are 
met if the scale-down factor (and hence the rotation rate) is sufficiently large: typically -~ l0 times. 

3. The use of such large scale-down factors, however, in general prohibits the modelling of 
compressibility and gas-viscosity effects and these must therefore be slight in the original flow if 
the method is to be applicable. 
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